Complete the Necessary Sections of the Uniform Roofing Permit Application Form and Attach the Required Documents as Noted Below:

<table>
<thead>
<tr>
<th>Roof System</th>
<th>Required Sections of the Permit Application Form</th>
<th>Attachments Required See List Below</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Slope Application</td>
<td>A, B, C</td>
<td>1, 2, 3, 4, 5, 6, 7</td>
</tr>
<tr>
<td>Prescriptive BUR-RAS 150</td>
<td>A, B, C</td>
<td>4, 5, 6, 7</td>
</tr>
<tr>
<td>Asphactic Shingles</td>
<td>A, B, D</td>
<td>1, 2, 4, 5, 6, 7</td>
</tr>
<tr>
<td>Concrete or Clay Tile</td>
<td>A, B, D, E</td>
<td>1, 2, 3, 4, 5, 6, 7</td>
</tr>
<tr>
<td>Metal Roofs</td>
<td>A, B, D</td>
<td>1, 2, 3, 4, 5, 6, 7</td>
</tr>
<tr>
<td>Wood Shingles and Shakes</td>
<td>A, B, D</td>
<td>1, 2, 4, 5, 6, 7</td>
</tr>
<tr>
<td>Other</td>
<td>As Applicable</td>
<td>1, 2, 3, 4, 5, 6, 7</td>
</tr>
</tbody>
</table>

Attachments Required:

1. Fire Directory Listing Page
2. From Product Approval:
 - Front Page
 - Specific System Description
 - Specific System Limitations
 - General Limitations
 - Applicable Detail Drawings
3. Design Calculations per Chapter 16, or if applicable, RAS 127 or RAS 128
4. Other Component of Product Approval
5. Municipal Permit Application
6. Owners Notification for Roofing Considerations (Reroofing Only)
7. Any Required Roof Testing/Calculation Documentation
Section A (General Information)

Master Permit No. ___________________________ Process No. ____________
Contractor’s Name ___________________________
Job Address __________________________________

ROOF CATEGORY

☐ Low Slope ☐ Mechanically Fastened Tile ☐ Mortar/Adhesive Set Tiles
☐ Asphallic Shingles ☐ Metal Panel/Shingles ☐ Wood Shingles/Shakes
☐ Prescriptive BUR-RAS 150

ROOF TYPE

☐ New roof ☐ Repair ☐ Maintenance ☐ Reroofing ☐ Recovering

ROOF SYSTEM INFORMATION

Low Slope Roof Area (SF)______ Steep Sloped Roof Area (SF)______ Total (SF)______

Section B (Roof Plan)

Sketch Roof Plan: Illustrate all levels and sections, roof drains, scuppers, overflow scuppers and overflow drains. Include dimensions of sections and levels, clearly identify dimensions of elevated pressure zones and location of parapets.
Section C (Low Slope Application)
Fill in specific roof assembly components and identify manufacturer.
(If a component is not used, identify as "NA")

System Manufacturer: ____________________________

Product Approval No.: __________________________

Design Wind Pressures, From RAS 128 or Calculations:

Zone 1: _____ Zone 1: _____ Zone 2: _____ Zone 3: _____

Max. Design Pressure, from the specific product approval system: ____________________________

Deck:
Type: ____________________________
Gauge/Thickness: ____________________________
Slope: ____________________________

Anchor/Base Sheet & No. of Ply(s): ____________________________

Anchor/Base Sheet Fastener/Bonding Material: ____________________________

Insulation Base Layer: ____________________________

Base Insulation Size and Thickness: ____________________________

Base Insulation Fastener/Bonding Material: ____________________________

Top Insulation Layer: ____________________________
Top Insulation Size and Thickness: ____________________________
Top Insulation Fastener/Bonding Material: ____________________________

Base Sheet(s) & No. of Ply(s): ____________________________
Base Sheet Fastener/Bonding Material: ____________________________

Ply Sheet(s) & No. of Ply(s): ____________________________
Ply Sheet Fastener/Bonding Material: ____________________________

Top Ply: ____________________________
Top Ply Fastener/Bonding Material: ____________________________

Surfacing: ____________________________

Fastener Spacing for Anchor/Base Sheet Attachment:

Zone 1: _____ " oc @ Lap, # Rows _____ @ _____ " oc

Zone 2: _____ " oc @ Lap, # Rows _____ @ _____ " oc

Zone 3: _____ " oc @ Lap, # Rows _____ @ _____ " oc

Number of Fasteners Per Insulation Board:

Zone 1: _____ Zone 1: _____ Zone 2: _____ Zone 3: _____

Illustrate Components Noted and Details as Applicable:
Woodblocking, Gutter, Edge Termination, Striping, Flashing, Continuous Clean, Cant Strip, Base Flashing, Counter Flashing, Coping, Etc.

Indicate: Mean Roof Height, Parapet Height, Height of Base Flashing, Component Material, Material Thickness, Fastener Type, Fastener Spacing or Submit Manufacturers Details that Comply with RAS 111 and Chapter 16.
Section D (Steep Sloped Roof System)

- Roof System Manufacturer:
- Notice of Acceptance Number:
- Minimum Design Wind Pressures, If Applicable (From RAS 127 or Calculations):
 Zone 1: Zone 2e: Zone 2n: Zone 2r: Zone 3e: Zone 3r:

- Deck Type:
- Type Underlayment:
- Insulation:
- Fire Barrier:
- Fastener Type & Spacing:
- Adhesive Type:
- Type Cap Sheet:
- Roof Covering:
- Type & Size Drip Edge:

- Roof Slope: : 12

- Ridge Ventilation?

- Mean Roof Height:

High-Velocity Hurricane Zone Uniform Permit Application Form
High-Velocity Hurricane Zone Uniform Permit Application Form

Section E (Tile Calculations)

For Moment based tile systems, choose either Method 1 or 2. Compare the values for \(M_t \) with the values from \(M_r \). If the \(M_t \) values are greater than or equal to the \(M_r \) values, for each area of the roof, then the tile attachment method is acceptable.

Method 1 "Moment Based Tile Calculations Per RAS 127"

\[
\text{Zone 1: } \lambda \times \lambda = \ldots - Mg: \lambda = M_{r1} \quad \text{Product Approval } M_t \\
\text{Zone 2e: } \lambda \times \lambda = \ldots - Mg: \lambda = M_{r2e} \quad \text{Product Approval } M_t \\
\text{Zone 2n: } \lambda \times \lambda = \ldots - Mg: \lambda = M_{r2n} \quad \text{Product Approval } M_t \\
\text{Zone 2r: } \lambda \times \lambda = \ldots - Mg: \lambda = M_{r2r} \quad \text{Product Approval } M_t \\
\text{Zone 3e: } \lambda \times \lambda = \ldots - Mg: \lambda = M_{r3e} \quad \text{Product Approval } M_t \\
\text{Zone 3r: } \lambda \times \lambda = \ldots - Mg: \lambda = M_{r3r} \quad \text{Product Approval } M_t
\]

Method 2 "Simplified Tile Calculations Per Table Below"

<table>
<thead>
<tr>
<th>Required Moment of Resistance ((M_t)) From Table Below</th>
<th>Product Approval (M_r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Roof Height Roof Slope</td>
<td>15'</td>
</tr>
<tr>
<td>2:12</td>
<td>34.4</td>
</tr>
<tr>
<td>3:12</td>
<td>32.2</td>
</tr>
<tr>
<td>4:12</td>
<td>30.4</td>
</tr>
<tr>
<td>5:12</td>
<td>28.4</td>
</tr>
<tr>
<td>6:12</td>
<td>26.4</td>
</tr>
<tr>
<td>7:12</td>
<td>24.4</td>
</tr>
</tbody>
</table>

*Must be used in conjunction with a list of moment based tile systems endorsed by the Broward County Board of Rules and Appeals.

For Uplift based tile systems use Method 3. Compare the values for \(F' \) with the values for \(F_r \). If the \(F' \) values are greater than or equal to the \(F_r \) values, for each area of the roof, then the tile attachment method is acceptable.

Method 3 "Uplift Based Tile Calculations Per RAS 127"

\[
\text{Zone 1: } \lambda \times \lambda = \ldots - W: \lambda \times \cos r = F_{r1} \quad \text{Product Approval } F' \\
\text{Zone 2e: } \lambda \times \lambda = \ldots - W: \lambda \times \cos r = F_{r2e} \quad \text{Product Approval } F' \\
\text{Zone 2n: } \lambda \times \lambda = \ldots - W: \lambda \times \cos r = F_{r2n} \quad \text{Product Approval } F' \\
\text{Zone 2r: } \lambda \times \lambda = \ldots - W: \lambda \times \cos r = F_{r2r} \quad \text{Product Approval } F' \\
\text{Zone 3e: } \lambda \times \lambda = \ldots - W: \lambda \times \cos r = F_{r3e} \quad \text{Product Approval } F' \\
\text{Zone 3r: } \lambda \times \lambda = \ldots - W: \lambda \times \cos r = F_{r3r} \quad \text{Product Approval } F'
\]

Where to Obtain Information

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Where to find</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Pressure</td>
<td>Zones 1, 2e, 2n, 2r, 3e, 3r</td>
<td>From applicable table in RAS 127 or by an engineering analysis prepared by PE based on ASCE 7</td>
</tr>
<tr>
<td>Mean Roof Height</td>
<td>H</td>
<td>Job Site</td>
</tr>
<tr>
<td>Roof Slope</td>
<td>0</td>
<td>Job Site</td>
</tr>
<tr>
<td>Aerodynamic Multiplier</td>
<td>(\lambda)</td>
<td>Product Approval</td>
</tr>
<tr>
<td>Restoring Moment due to Gravity</td>
<td>(M_g)</td>
<td>Product Approval</td>
</tr>
<tr>
<td>Attachment Resistance</td>
<td>(M_r)</td>
<td>Product Approval</td>
</tr>
<tr>
<td>Required Moment Resistance</td>
<td>(M_t)</td>
<td>Calculated</td>
</tr>
<tr>
<td>Minimum Attachment Resistance</td>
<td>(F')</td>
<td>Product Approval</td>
</tr>
<tr>
<td>Required Uplift Resistance</td>
<td>(F_r)</td>
<td>Calculated</td>
</tr>
<tr>
<td>Average Tile Weight</td>
<td>(W)</td>
<td>Product Approval</td>
</tr>
<tr>
<td>Tile Dimensions</td>
<td>(L = \text{length}) (W = \text{width})</td>
<td>Product Approval</td>
</tr>
</tbody>
</table>

All calculations must be submitted to the building official at the time of permit application.